

WEKEP IT MOVING

ENGINEERED PULLEYS & IDLERS

LARGE PROJECTS

Operations around the world demand efficient and reliable systems. Customers are looking for components they can count on when they need them. That is exactly what PPI offers.

PPI components can be used in a wide range of applications from 1 to 10,000 horsepower. Customers around the globe trust PPI conveyor components.

Our promise is simple, provide quality products with a competitive price and unbeatable customer service.

Whether the requirements of your operation are underground or above, PPI is your partner supplying components that will support your productivity goals from beginning to end.

PPI is a world renowned provider of conveyor components and solutions. It is this reputation that drives customers to use PPI pulleys and idlers when reliability is vital.

Manufacturing is at the core of what we do. Investment in state-of-the-art technology and qualified employees assure we remain a leader in providing the highest quality products with the shortest lead times in the industry.

IN HOUSE CAPABILITIES

- Shaft machining up to 28" (711mm) in diameter and 315" (8001mm) long
- Vulcanized lagging up to 72" (1829mm) diameter and 192" (4877mm) face width
- Roll rims from plate up to 2" (51mm) thick and up to 120" (3048mm) in diameter
- Special surface protection
- Cast urethane lagging for pulleys
- Total Indicator Run-out (TIR) and roll drag testing for idlers
- Testing and reporting for customer directed inspections
- Thermal stress relief of pulleys up to 72" (1829mm) diameter and 120" (3048mm) face width

ENGINEERING AND TECHNICAL SUPPORT

A dedicated engineering team utilizing PFEA and P-FLEX to optimize each design. Custom engineering services available

FIELD TECHNICAL SUPPORT

Field Service Technicians in the United States, Canada and South America. These resources are available for troubleshooting, surveying and site visits providing complete service from beginning to end.

PRODUCT DESIGN

Offering multiple design options including profiled end disc and turbine designs for maximum product predictability and strength

"This manufacturing approach allows us to be very focused, but it also gives greater flexibility to react quickly to the customer needs."

- Roger A. Brown. President of PPI

PULLEY PROJECTS

When it comes to large pulleys no other manufacturer is as well equipped to produce solutions to the world's most challenging applications as PPI. From extreme belt tensions and massive sizes to some of the coldest conveying environments on earth, PPI has the expertise and experience to keep operations up and running.

PULLEY PROJECT HISTORY

In addition to the ability to produce highly engineered pulleys for the most demanding applications, PPI has the manufacturing capabilities to produce them in unmatched quantities. Below is a sampling of some of the projects PPI has successfully completed around the world.

00 pi c		accirca quarion			
YEAR	PROJECT NAME	LOCATION	QTY. OF PULLEYS		
2019	Aktogay 2	Kazakhstan	61		
2019	Cliffs Toledo	USA	86		
2019	Eagle Gold	Canada	63		
2019	Oyu Tolgoi	Mongolia	11		
2019	Spence	Chile	61		
2018	Baffinland	Canada	39		
2018	Chuquicamata	Chile	39		
2017	G3 Vancouver	Canada	90		
2016	Nordgold Gross	Russia	121		
2015	Oxidos Encuentro	Chile	66		
2015	Vulcan Materials Stockbridge	USA	241		
2014	Belneftegaz	Belarus	71		
2014	Cerro Verde	Peru	31		
2014	Copper Mountain	Canada	22		
2014	Gahcho Kue	Canada	72		
2014	Morenci SWLP	USA	132		
2014	Quebalix 4	Mexico	20		
2014	Shougang	Peru	42		
2014	Viterra Terminals	Canada	15		
2013	Aktogay	Kazakhstan	61		
2013	Bozshakol	Kazakhstan	51		
2013	Buenavista Concentrator 2	Mexico	94		
2013	Deepwater Bulk Terminal	USA	91		
2013	Eleonore Mine	Canada	125		
2013	Escondida OGP1	Chile	61		
2013	Hycroft Mine	USA	64		
2013	International Marine Terminal Laydown Yard	USA	35		
2013	Las Bambas	Peru	83		
2013	Morenci 55k	USA	128		
2013	Neptune Terminals	Canada	27		
2013	Port of Sept-iles	Canada	78		
2012	Agrium Vanscoy	Canada	58		
2012	Bloom Lake	Canada	62		
2012	Burnside Terminals	USA	19		
2012	Cerrejon	Colombia	6		
2012	Cerro Verde	Peru	189		
2012	Conga	Peru	59		
2012	Constancia	Peru	34		
2012	Cormin Callao	Peru	62		
2012	Escondida OLAP	Chile	26		
2012	Highland Valley Copper	Canada	16		
2012	Imperial Oil Kearl	Canada	10		
2012	International Marine Terminal Northyard	USA	33		
2012	Ministro Hales	Chile	76		
2012	Mount Milligan	Canada	35		
2012	Ridley Terminals	Canada	71		
2012	Tygart Valley Complex	USA 78			

s a sampling of some of the projects PPI has suc							
YEAR	PROJECT NAME	LOCATION	QTY. OF PULLEYS				
2011	Camak Quarry	USA	118				
2011	Caserones	Chile	96				
2011	Cerro Verde	Peru	4				
2011	Gilgel Gibe	Ethiopia	124				
2011	International Marine	USA	23				
2011	IOC Concentrator	Canada	15				
2011	Lomas Bayas	Chile	33				
2011	Long Harbour Nickel	Canada	62				
2011	Mildred Lake	Canada	32				
2011	Mina Ministro Hales	Chile	30				
2011	Pascua Lama	Chile/Argentina	99				
2011	Penasquito	Mexico	7				
2011	PT Kaltim Prima Coal	Indonesia	123				
2011	Tutupan	Indonesia	46				
2010	Antamina	Peru	29				
2010	Antapaccay	Peru	21				
2010	El Teniente	Chile	18				
2010	Endako	Canada	29				
2010	Escondida	Chile	16				
2010	Gualcamayo	Argentina	19				
2010	New Afton	Canada	53				
2010	Pointe Noire Facility	Canada	47				
2010	Suncoke - Middletown	USA	96				
2010	Toromocho	Peru	39				
2009	Ambatovy	Madagascar	15				
2009	Bayovar	Peru	32				
2009	Collahuasi Pebbles Project	Chile	34				
2009	Gabriela "Gaby" Mistral	Chile	25				
2009	John W. Turk Jr. Power Station	USA	53				
2009	Los Pelambres	Chile	55				
2009	Ma'Aden Ras al Khair	Saudi Arabia	149				
2009	Tia Maria	Peru	144				
2009	Trekkopje	South Africa	13				
2008	Aitik Mine	Sweden	24				
2008	Andina	Chile	65				
2008	Bailey - Crabapple	USA	18				
2008	Buenavista Quebalix 3	Mexico	44				
2008	CNRL - Horizon	Canada	18				
2008	Cortez Hills	USA	40				
2008	El Abra	Chile	177				
2008	Haverhill North Coke	USA	79				
2008	latan Generating	USA	103				
	Station Martin Marietta Augusta		213				
2008	Midway Coal	USA	110				
2008	Oyu Tolgoi	Mongolia	61				
2008	Penasquito	Mexico 74					
2008	Prairie State	USA	86				
	Generating Station	33/1					

esstully completed around the world.						
YEAR	PROJECT NAME	LOCATION	QTY. OF PULLEYS			
2008	Springerville Unit 4	USA	57			
2007	Andacollo	Chile	32			
2007	Black Thunder	USA	11			
2007	Comanche Unit 3	USA	74			
2007	Gabriela "Gaby" Mistral	Chile	22			
2007	North Antelope Rochelle	USA	30			
2007	Safford	USA	153			
2007	Veladero	Argentina	29			
2006	AEP - Mountaineer	USA	75			
2006	Belle Ayre	USA	32			
2006	Cerro Verde	Peru	67			
2006	CNRL - Horizon	Canada	27			
2006	Gabriela "Gaby" Mistral	Chile	72			
2006	Muskeg River Oil Sands	Canada	11			
2006	Roxboro Plant	USA	94			
2005	BHP Spence	Chile	82			
2005	Cerro Verde	Peru	32			
2005	Chuquicamata	Chile	45			
2005	Cowal Gold	Australia	30			
2005	Port of Immingham	United Kingdom	99			
2005	San Cristobal	Bolivia	36			
2005	Suncor Steepbank	Canada	15			
2005	Syncrude SWQR	Canada	14			
2004	El Refugio	Chile 82				

QUALITY PULLEY CHARACTERISTICS

BALANCING – Balancing specifications define the maximum amount of pulley imbalance acceptable for the application. The International Standards Organization (ISO) specification ISO 1940/1 is typically used as a guide for pulley balancing by pulley manufacturers. Typically, pulleys are static balanced to bring them into specification.

BEARING HOUSINGS – Evaluations are performed based on imposed loads, operating environment, operational speeds and customer preference. Split pillow block housings in various types, such as; SAF, SAFD, SDAF, SNG and SDCD are common. Housings are available in cast iron, ductile iron and cast steel.

END DISC – End disc design relates to the selection of end disc material composition, thickness, shape and hub configuration for the conveyor pulley. As with shaft selection, the key to end disc design is the ability to predict the stresses in the end disc assembly, and then limit them within acceptable parameters by the selection of disc thickness, disc material, shape and weld methods (if utilized).

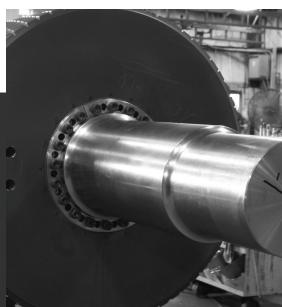
LAGGING – Vulcanized in-house with our extruder system and auto-clave. Multiple rubber compounds available depending on application, thicknesses, hardness, and groove options available. Rubber lagging can be machined to meet customer TIR requirements. Ceramic lagging available in two forms; pads installed in hot-vulcanized and cold-bond method or Vulcanized Engineered Ceramic (VEC). In-house urethane lagging offered for demanding applications where high temperature, high abrasion, and oil and chemicals are a concern.

LINE BORING – Line boring is used for many high tension pulleys with locking assemblies to improve hub alignment and shaft run out. PPI line bores all pulleys with locking assemblies 9.44882" (240 mm) or larger.

LOCKING ASSEMBLY – While the XT® hubs and bushings provide reliability and a cost effective method of attaching pulleys to a shaft on conventional pulleys, keyless locking assemblies are often used on high tension pulleys. The selection of a shaft to pulley connection is extremely critical as it must transmit not only the torque but also the bending loading between shaft and pulley. For high tension pulley systems, PPI recommends keyless locking assemblies. While generally used on shafts 12 inches (305mm) or greater in diameter, they are available from less than an inch (20mm) to over 23 inches (600mm), larger upon request.

NON-DESTRUCTIVE TESTING – Nondestructive testing methods are often performed on pulley welds to insure quality. Methods such as Ultrasonic Testing, Magnetic Particle Testing, Charpy Testing and Dye Penetrant Testing are the common nondestructive test procedures used by pulley manufacturers.

RIM – Because the rim experiences full belt tension, every high tension pulley system rim is analyzed for stresses generated by the tension as well as the wrap of the belt, and the end couple that is caused by the bending moment being transferred to the rim by the end disc. Typically, high tension systems will use high modulus belts, requiring the rim be machined to ensure concentricity between the rim and the shaft.


SHAFT – Shaft deflection and shaft bending stress are fundamental elements of high tension pulley system design. Limits are based on CEMA recommendations and customer specifications. Standard shafting used in PPI pulley assemblies is 1045. Other shafting materials, such as 4140, are optional based on customer specifications and when the design requirements exceed shafting specifications.

THERMAL STRESS RELIEF – Testing has shown a significant increase in life for pulleys that are thermally stress relieved. This cost-effective option has proven to be so valuable for the longevity of the product. PPI offers this service our manufacturing facilities.

WELDING – Each weld is carefully optimized in the design phase with PFEA. From joint preparation through pre-heat and welding, each is done to the appropriate American Welding Society [AWS] specification.

IDLER PROJECTS

PPI has been engineering and manufacturing conveyor components for over four decades. Over that time, PPI has emerged as the industry leader providing a full line of CEMA rated idlers. In addition to standard CEMA idlers, the experienced staff of engineers review unique application requirements and design idlers to meet specifications in the most productive manner. Customers look to PPI to provide idlers that meet their specific project requirements in the most demanding applications around the world. Whatever the application may be, PPI is the preferred choice for top of the line conveyor components.

2014 ARIZONA, UNITED STATES

2013 NORTH CAROLINA UNITED STATES

2011 CHILE

2009 COLOMBIA

2013 PERU

2012 ARIZONA, UNITED STATES

2008 MEXICO

2005 KENTUCKY UNITED STATES

IDLER PROJECT HISTORY

Whatever material conveyed PPI can provide idlers to meet the most demanding applications. Recognized as the industry leader, PPI provides a broad idler product line as well as new and innovative product solutions.

PPI's experienced engineering staff will evaluate each application and provide cost effective solutions while maintaining optimal product performance. Refer to the project list below for a sampling of the wide range of PPI idlers serving operations around the world.

Refer	to the project list b	elow for a sar	npling of th	ne wide range of	PPI idlers serving	operations a	round the wor	d.
YEAR	PROJECT NAME	LOCATION	CEMA SERIES	BELT WIDTH	BEARING SIZE	BELT SPEED FPM (MPS)	QTY. OF CONVEYORS	DETAILS
2019	Eagle Gold	Canada	D&E	42" to 72" (1219mm to1829mm)	6305 & 6308	12 (4)	Supplied idler structure	
2019	Cliffs	USA	C, D, & E	36" & 54" (914mm & 1372mm)	6204, 6305 & 6307	20 (6)		
2018	Baffinland	Canada	C, D, & E	36", 48", 54" & 84" (914mm, 1219mm, 1372mm & 2134mm)	P204, 6305 & 6308	7(2)		
2017	Nordgold Gross	Russia	C & D	48" (1219mm)	P204 & 6305	49 (15)	Low temperature bearings	
2017	G3 Vancouver	Canada	D	72" (1829mm)	6305	16 (5)	Offset center roll	
2016	Koch Enid	USA	C&D	36", 48" & 60" (914mm, 1219mm, 1524mm)	6204 & 6305	14 (4)	Nine conveyors & five pipe conveyors	
2016	Port Dikson	Russia	D&E	36", 42" & 54" (914mm, 1219mm & 1372mm)	6305 & 6307	11 (3)	Low temperature bearings	
2015	Stockbridge Quarry	Georgia	D&E	30" to 54" (762mm & 1372mm)	6305, 6307 & 6308	N/A	51	Standard catalog products
2015	Tutupan	Indonesia	G	83" & 95" (2100mm & 2400mm)	6312	925 & 1,083 (282 & 330)	2	Garland Idlers
2015	Morelos	Mexico	D, E, & F	48" & 84" (1219mm & 2134mm)	6305, 6307, 6308 & 6310	13 to 370 (4 to 113)	36	F7 unequal troughters with removable-end brackets, low profile transition toughers
2015	Ekati	Northwest Territories	E	54" & 72" (1372mm & 1829mm)	6308	N/A	2	PPI True Impact System for low temperatures
2015	Enid	Oklahoma	C&D	36", 48" & 60" (914mm, 1219mm & 1524mm)	6204 & 6305	59 to 709 (18 to 216)	14	Nine troughed conveyors and five pipe conveyors, all rames galvanized, FAG brand bearings
2015	Medina	Texas	C, D, & E	30" to 96" (762mm to 2438mm)	P204, 6305, 6307 & 6308	257 to 521 (78 to 159)	60	Idlers for 60 conveyors plus 106' of D6 TIS impact bed and 30' of E7 TIS impact bed
2014	Morenci SWLP	Arizona	E	54", 60" & 72" (1372mm, 1524mm & 1829mm)	6307 & 6308	580 to 1000 (177 to 305)	13	Banked trougher and v-return assemblies for overland, machined rubber groove return rolls
2014	Hammond Transfer	Indiana	C&D	42", 48", & 54" (1067mm, 1219mm & 1372mm)	P204 & 6305	N/A	8	Stainless steel shafts, galvanized frames, under slung style frames, plastic rolls
2014	Calhidra	Mexico	C&D	30", 36" & 48" (762mm, 914mm & 1219mm)	P204 & 6305	150 to 200 (46 to 61)	4	Special 5-roll 70° trougher assemblies
2014	Vernal Pit & Mill	Utah	D	42" (1067mm)	6305	900 (274)	1	2,700' long overland with curve, banked troughers and banked under slung style returns
2013	Convent Marine Terminal	Louisiana	E	72" & 84" (1829mm & 2134mm)	6307 & 6308	888 (271)	4	Retractable frames, wide base, PPI Rigid Rail Structure
2013	Imouraren Mine	Niger	E	79" (2000mm)	N/A	39 (12)	10	10 feeders with 242 live-shaft impact rollers with PPI type E bearings
2013	Hertford	North Carolina	С	48" (1220mm)	P204	272 (83)	2	Pipe conveyor rolls and brackets
2013	Constancia	Peru	D&E	42", 66", & 72" (1067mm, 1676mm & 1829mm)	6305, 6307 & 6308	216 to 688 (66 to 210)	7	Idlers for seven conveyors plus 60' of TIS impact bed, all galvanized frames.

which is the same of the same	Continued to the second of

YEAR	PROJECT NAME	LOCATION	CEMA SERIES	BELT WIDTH	BEARING SIZE	BELT SPEED FPM (MPM)	NUMBER OF CONVEYORS	DETAILS
2013	Eleonore	Quebec	D, E, & F	30" to 84" (762mm to 2134mm)	6305, 6307, 6308, & 6310	N/A	27	Bearings with low temperature grease, return rolls with molded urethane coating
2012	Metcalf 55k Expansion	Arizona	E&F	54", 60", 72", 96", & 120" (1372mm, 1524mm, 18229mm, 2438mm & 3048mm)	6307, 6308, & 6310	32 to 790 (10 to 241)	37	22 conveyors, 13 feeders ranging from 54" to 120" belt width
2012	El Teniente	Chile	E	48" & 60" (1219mm & 1524mm)	6307 & 6308	197 & 492 (60 & 150)	2	Wide base frames, low drag bearings, removable-end bracket style frames
2012	Ministro Hales	Chile	E	54" (1372mm)	6307 & 6308	N/A	1	One overland conveyor, banked troughers and v-return frames
2012	Pascua Lama	Chile/ Argentina	C, D, & E	18" to 60" (457mm to 1524mm)	P204, 6305, 6307, & 6308	43 to 629 (13 to 192)	36	21 conveyors and 15 feeders, removable-end bracket style troughers
2012	Calhidra	Mexico	С	30" (762mm)	P204	300 (91)	1	1 km long overland using PPI rigid rail idler structure and idler assemblies.
2011	Endako	British Columbia	E	54" & 72" (1372mm & 1829mm)	6307 & 6308	N/A	2	Bearings with low temperature grease. Trougher frames with removable-end brackets.
2011	Lomas Bayas	Chile	E	48" & 60" (1219mm & 1524mm)	6307 & 6308	1,083 (330)	4	Four overlands totaled 13,635'
2011	Carlsbad	New Mexico	С	25" (625mm)	P204	335 (102)	1	Pipe conveyor rolls, panels, and hardware.
2011	Antapaccay	Peru	C, E, & F	36", 72" & 96" (914mm, 1829mm & 2438mm)	P204, 6307, 6308, & 6310	79 to 640 (24 to 195)	11	Wide base frames. Removable-end bracket style frames.
2011	Callao Terminals	Peru	D	30", 36", 54" & 60" (762mm, 2438mm, 1372mm & 1524mm)	6305, 6307, & 6308	N/A	17	11 conveyors and 6 feeders.
2011	IOC Terminals	Quebec	F&G	72" (1829mm)	6310 & 6312	N/A	6	Bearings with low temperature grease. Offset center roll troughers.
2010	El Teniente	Chile	E	48" & 60" (1219mm & 1524mm)	6307 & 6308	106 to 472 (32 to 144)	3	Wide base frames. Removable-end bracket style frames.
2010	Rodemacher	Louisiana	D	20" (500 mm) Pipe	6305	827 (252)	1	Supplied 9,196 pipe conveyor rolls.
2010	Lazaro Cardenas	Mexico	D	30", 36", 42", 48" & 72" (762mm, 914mm, 1067mm, 1219mm & 1829mm)	6305	N/A	N/A	ISO rolls and frames. PPI supplied 1,710 rolls, 676 frames, and 1,200 return drop brackets.
2009	Los Pelambres	Chile	D&E	36", 48", 54" & 60" (2438mm, 1219mm, 1372mm & 1524mm)	6305, 6307, & 6308	393 to 492 (120 to 150)	13	Wide base frames. Removable-end bracket style frames.
2009	Collahuasi	Chile	D	36" & 42" (914mm & 1067mm)	6305	531 (162)	2	70 of our True Impact Systems (TIS)
2008	Penasquito	Mexico	D&E	60" & 84" (1524mm & 2134mm)	6305 & 6308	260 to 614 (79 to 187)	10	Retractable-style frames. Special self-aligners. Special drop brackets.

QUALITY IDLER CHARACTERISTICS

TUBE/SHELL - Bearing housing to tube weld is fully under the tube edge protecting it from wear. A variety of tube diameters and tube thicknesses are available.

SEAL – The service life of the idler is directly proportional to the quality of seal. PPI seals are designed and manufactured for a long and trouble free life. Large diameter stationary seal. Highly effective centrifugal seal. Effective radial and labyrinth seals.

BEARINGS – Sized for your application. Sealed for life ball bearingsmeans no need to re-grease. Low rotational resistance. Sixteen arc minutes of angular deflection. High quality 52100 hardened and tempered bearing steel. Improved surface grinding to near motor quality sound levels increasing operating life. C4 radial clearance guaranteeing housing fit up clearance. Increased axial clearance to reduce roll drag. Contact seals with radial and axial lips increasing contamination protection. PPI uses third party testing to benchmark the bearings used in our idlers to recognized worldwide brands. Name brand bearings available if desired. Available bearing sizes: 6203, P204, 6204, 6305, 6306, 6307, 6308, 6310, and 6312.

LUBRICATION – Bearings factory supplied with 60% fill of 100 viscosity polyurea grease assuring excellent sealed for life lubrication. A range of special greases are also available for extreme conditions. Alternate grease fill available depending on application.

SHAFTS – Excessive shaft deflection is a common cause of bearing failure. PPI designs limit the extent of deflection to within the baring limits. Shaft diameters are selected for the idler assembly for given loading conditions.

FRAMES – Cross members are designed for optimum strength to weight ratio while providing adequate support for the rolls under loaded conditions. PPI frames have wide heavy duty formed end brackets, heavy duty footpads for a solid base, wide center brackets for heavy loads and minimal roll gaps. Custom designs

are available to meet individual requirements.

REDUCED NOISE – PPI has incorporated noise reduction into our design considerations. PPI's manufacturing processes keep total indicator run out (TIR) to a minimum. Doing this creates a roll that provides optimal roll to belt contact minimizing the potential for belt vibration.

REDUCED WEIGHT – Alternative designs and materials have allowed PPI to develop products lighter weight products. Rolls can either be manufactured from lightweight materials such as HDPE, Nylon, aluminum or can employ alternative designs such as hollow shafts.

MINIMIZED ROLL TIR – Minimizing roll TIR can prevent vibration and reduce noise generation. PPI rolls are checked regularly during manufacturing to assure they comply with PPI quality standards. PPI can offer rolls that meet tighter TIR requirements for more demanding specifications, including scale quality rolls. The standard TIR value published by CEMA for scale quality rolls is 0.015 inches.

BALANCE – Unbalanced rolls can cause excessive vibration throughout the conveyor system. These vibrations can cause damage to conveyor structure as well as the idler roll itself. By purchasing top of the line materials with stringent specifications and utilizing exclusive build processes PPI rolls maintain exceptional balance characteristics. PPI can also meet a range of dynamic balancing specifications to meet customer requirements.

LOW TEMPERATURE – For low temperatures (-20 F or -29 C and below) our rolls can be fitted with bearings with special grease.

ROLL DRAG – Roll drag has been a key focus in PPI's roll design and is tested routinely to ensure quality. PPI has developed an idler seal configuration that offers exceptional protection from contamination while maintaining acceptable roll drag performance. Testing has shown that PPI's standard rolls fall within the CEMA published allowable values for roll drag. In applications where roll drag becomes a major factor that affects power consumption and horse power requirements PPI offers several different types of seal and bearing configurations to meet customer's demanding specifications.

SURFACE TREATMENT – Most non-machined surfaces shall be painted unless otherwise protected by such means as rubber, plastic, plating, etc. Standard paint applied to rolls and frames is a high solids alkyd enamel giving an approximate dry film thickness of 1 mil. Other options are available such as a urethane primer with an alkyd enamel top layer giving an approximate dry film thickness of 1.7 mils, or a high performance two component urethane primer with a top layer of high performance, high solids, and two component urethane giving an approximate dry film thickness of 1.7 - 2.5 mils. PPI can meet many other paint requirements depending on customer needs. Exposed shafting is unprotected unless otherwise specified.

Hot Dip Galvanizing is another option for frames and brackets. Galvanizing forms a metallurgical bond between the zinc and the underlying steel, creating a barrier that is part of the metal itself. During galvanizing, the liquid zinc reacts with the surface of the steel article to form a series of zinc-iron alloy layers.

OTHER SPECIAL PRODUCT OFFERINGS

IDLERS

Engineered Idler Product Line Retractable idler frames

Galvanized frames
Catenary idlers

Stainless steel frames

Lagged idler rolls

Pipe conveyor idler panels

Rubber grooved rolls

Rubber Disk Returns with Massed Ends

Retro Rolls®

Return roll cages
HDPE or Nylon Rolls

Pillow Block Bearings

Catenary and Rigid Rail Idler Structure

Impact Systems

Five Roll "Cradle Style" Troughers

Under Slung Frames Swing Down V-Return V-Return Self-Aligners

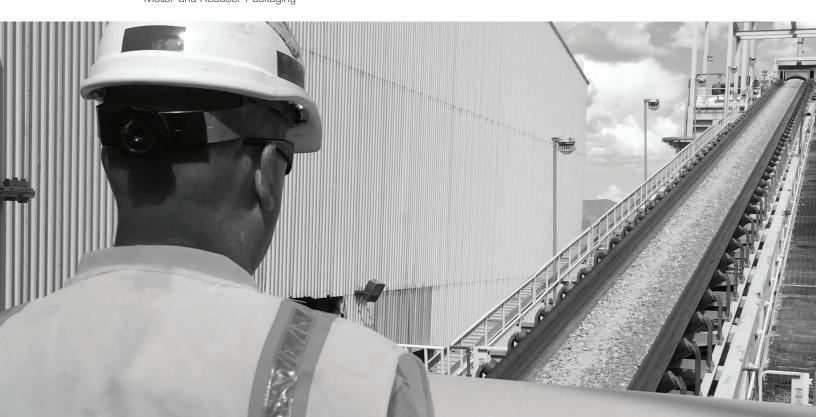
Banked Idlers

DIN/ISO Rolls and Frames

PULLEYS

Deflection Wheels
EZ Mount Pulley & Shaft System
Static Shaft Pulley (SSP®)
Apron Feeder Shafts
Herringbone Wing

Other Services


Tier I and Tier II Pulley restoration services

Field Service Technicians

Accessories

Take-Up Frames with hydraulic assist available
Bearings – SAF, SAFS, SD, SDAF, SDAFS, SNG, and many other manufacturers' bearings
Lagging – Rubber, Ceramic, VEC, and Urethane
Low-Speed Couplings

Motor and Reducer Packaging

WWW.PPI-GLOBAL.COM | SALES@PPI-GLOBAL.COM

Product shown are for illustrative purposes only and may display optional accessories or components. Please contact your sales representative for more information on product specifications.

PPI respectively reserves the right to make changes in engineering, design and specifications; add improvements; or discontinue manufacturing at any time without notice obligation.

PPI, RETRO ROLLS, SSP and their respective logos are trademarks of Precision, Inc. in the US and or other countries.

Copyright ©2021 Precision Pulley & Idler, all rights reserved.

CRP 004-06